Nucleophilic Addition of 1-Acetylindole Enolates to Pyridinium Salts. Stereoselective Formal Synthesis of (\pm)-Geissoschizine and (\pm)-Akagerine via 1,4-Dihydropyridines

M.-Lluïsa Bennasar,* J uan-Miguel J iménez, Bernat Vidal, Bilal A. Sufi, and J oan Bosch
Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona 08028, Spain

Received J uly 29, 1999

Abstract

Addition of the enolate derived from 1-acetylindole (3) to pyridinium salt 4b followed by acidinduced cydization of the resulting $\mathbf{1 , 4}$-dihydropyridine $\mathbf{5} \mathbf{b}$ in the presence of lithium iodide gives tetracyclic 3,7-methano[1,4]diazonino[1,2-a]indole 6b, which has subsequently been elaborated into the (E)-ethylidene derivative $\mathbf{7 b}$. From this compound is reported a stereocontrolled route to (\pm)geissoschizine, involving closure of C ring by Pummerer reaction, methanolysis of the resulting pentacydic lactam 12, and desulfurization. A similar synthetic sequence starting from the enolate of $\mathbf{3}$ and 2 -fluoropyridinium salt 15b gives access to the pentacyclic dilactam $\mathbf{2}$, which had previously been converted to (\pm)-akagerine through opening of the piperidone (D) ring.

The nucleophilic addition of indole-containing enolates to N -alkylpyridinium salts to give 1,4-dihydropyridines constitutes a general and versatile method for the synthesis of indole alkaloids. ${ }^{1}$ Taking advantage of the high reactivity of both the dihydropyridine and indole rings, it is possible to build complex polycyclic structures, thus providing access to a variety of alkal oids belonging to different structural types. Starting from the enolates derived from 1-, 2-, and 3-indoleacetates, we have synthesized indole alkaloids of the C-mavacurine ${ }^{2}$ and Strychnos ${ }^{3}$ groups, as well as tetracyclic akuammilinetype substructures, ${ }^{4}$ respectively. Similarly, starting from 2-acetylindole enolates, we have completed total syntheses of bridged (ervitsine) and fused 2-acylindole alkaloids of the ervatamine and silicine groups. ${ }^{5}$

In this paper, we report the extension of this methodology, using the enolate derived from 1-acetylindole as the nucleophilic partner. Successive formation of C-15/C-16 and $\mathrm{C}-2 / \mathrm{C}-3$ (biogenetic numbering) ${ }^{6}$ bonds, the former by nucleophilic attack of 1-acetylindole enolate to the γ-position of a pyridinium salt and the latter by acidpromoted cyclization of the resulting 1,4-dihydropyridine on the indole ring, affords tetracyclic 1-acylindole derivatives (A), from which we present short stereocontrolled synthetic routes to the alkaloids geissoschizine ${ }^{7}$ and akagerine. ${ }^{8}$

Geissoschizine is a pivotal early intermediate in indole alkaloid biosynthesis that has received considerable

[^0]attention from the synthetic standpoint, ${ }^{9}$ although most of the reported syntheses suffer from some stereochemical problems, as they usually lead to C-3/C-15 trans derivatives and/or to the unnatural Z configuration (or Z/E mixtures) for the ethylidene double bond. Consequently, additional steps to promote epimerization at C-3 and/or Z-E isomerization are required. Akagerine, a tetracyclic indole alkaloid isolated in 1975 from Strychnos usambarensis ${ }^{10}$ and later from several Strychnos species, ${ }^{11}$ has a peculiar skel eton related to that of geissoschizine, but lacking the characteristic piperidine (D) ring and containing an additional link between N-1 and C-17; consequently, it incorporates a perhydroazepine ring fused to a tetrahydro- β-carboline unit. This alkaloid has attracted much less synthetic attention: only one total synthesis in the racemic series via dilactam 2 (Scheme 1) ${ }^{12}$ and one enantioselective synthesis of (-)-akagerine ${ }^{13}$ have been reported to date.

Results and Discussion

Scheme 1 outlines the unified strategy for the synthesis of (\pm)-geissoschizine and (\pm)-akagerine. It consists of

[^1]Scheme 1. Synthetic Strategy

Akagerine
three well-differentiated phases: (i) construction of the tetracyclic partially reduced 3,7-methano[1,4]diazonino-[1,2-a]indole system \mathbf{A} (rings $A B D E$) using the abovementioned nucleophilic addition-cyclization methodology; (ii) closure of the tryptamine bridge (C ring) by cyclization of the functionalized two-carbon N -4 substituent on the indole 3-position to give the apogeissoschizinetype ${ }^{14,15}$ pentacyclic derivatives $\mathbf{1}$ or $\mathbf{2}$; and (iii) opening of either the seven-membered lactam (E) ring or the piperidine (D) ring to give geissoschizine or akagerine, respectively. In the former case, we anticipated that the opening of E ring would easily occur to relieve the strain associated with the pentacyclic derivative $\mathbf{1}$ and that the bridgehead character of $\mathrm{C}-3$ and $\mathrm{C}-15$ in $\mathbf{1}$ would ensure the required C-3/C-15 cis relationship of geissoschizine. In the latter case, the opening of the piperidine ring has previously been effected from 2, ${ }^{12}$ taking advantage of the 2-piperidone moiety, so the preparation of this pentacyclic dilactam constitutes a formal total synthesis of akagerine. The oxo group at C-21 in 2 would be introduced either by oxidation of the piperidine ring of $\mathbf{1}$ (or a suitable tetracyclic precursor) or by substitution of a fluorine atom, which would be present in the starting pyridinium salt $(Z=F)$, by a hydroxy group, taking advantage of the α-fluoro enamine moiety of \mathbf{A}.

To make use of tetracyclic substrates bearing different functionalized two-carbon N-4 substituents, we initially planned to prepare tetracycle 7a, which incorporates an easily removable N-benzyl group (Scheme 2). Thus, reaction of the enolate derived from 1-acetylindole (3) with pyridinium salt 4a gave 1,4-dihydropyridine $\mathbf{5 a}$ in 22% yield. Acid-induced (TsOH, $\mathrm{C}_{6} \mathrm{H}_{6}$) cyclization in the presence of lithium iodide ${ }^{16}$ gave tetracycle $\mathbf{6 a}$ (50\%), which was stereoselectively el aborated in 33% yield into

[^2]
Scheme 2a

a Reagents and conditions: (i) LDA, THF, $-30^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; (ii) TsOH-C66 ${ }_{6}$, Lil, THF, rt, 1.5 h ; (iii) $2.5 \mathrm{~N} \mathrm{HCl}, \mathrm{MeOH}$, reflux, 2 h, then $\mathrm{NaBH}_{4}, \mathrm{MeOH}, \mathrm{O}^{\circ} \mathrm{C}, 1 \mathrm{~h}$.
the (E)-ethylidenepiperidine 7a by the known ${ }^{17}$ one-pot sequence consisting of treatment with refluxing aqueous HCl and subsequent sodium borohydride reduction. However, preliminary experimentation revealed that debenzylation of 7a by hydrogenolysis [($\left.\mathrm{Pd}(\mathrm{OH})_{2}, \mathrm{MeOH}\right]$ took place with simultaneous hydrogenation of the ethylidene substituent. Therefore, we turned our attention to tetracycles 6b and 7b, which incorporate a 2-(phenylsulfanyl)ethyl group on the piperidine nitrogen able to induce closure of the C ring by electrophilic cyclization of a thionium ion generated by Pummerer rearrangement. ${ }^{18}$ The nucleophilic addition-cyclization sequence from 1-acetyl indole (3) was then extended to pyridinium bromide 4b: in this way, tetracycle 6b (a vinylogous urethane) was obtained (40\%) through 1,4-dihydropyridine $\mathbf{5 b} \mathbf{(2 0 \%)}$ and then chemoselectively oxidized at the sulfur atom with m-CPBA to provide sulfoxide 8 as a mixture of stereoisomers (evident by NMR) in 89\% yield (Scheme 3). Pummerer cyclization of these amino sulfoxides 8 was satisfactorily accomplished with trimethylsilyl triflate (TMSOTf) in the presence of diisopropylethylamine (DIPEA) ${ }^{19}$ to give (60% yield) an epimeric mixture (NMR) of pentacyclic sulfides 9, which were converted (80% yield) to pentacycle $\mathbf{1 0}$ by desulfurization with $\mathrm{Ph}_{3} \mathrm{SnH}-\mathrm{AIBN}$ in $\mathrm{C}_{6} \mathrm{H}_{6}$. Unfortunately, this pentacycle could not be converted into the desired Iactam 1 since the application of the acid hydrolysis-decarboxy-Iation-reduction sequence in order to transform the acrylate moiety into the (E)-ethylidene group resulted in decomposition, probably due to the opening of the sevenmembered lactam ring.

F or this reason, we decided to reverse the order of the steps in the above sequence and to elaborate the (E)-

[^3]
Scheme 3a

a Reagents and conditions: (i) $\mathrm{m}-\mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (ii) TMSOTf, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 1.5 h ; (iii) $\mathrm{Ph}_{3} \mathrm{SnH}, \mathrm{AIBN}, \mathrm{C}_{6} \mathrm{H}_{6}$, reflux, 1 h .

14
a Reagents and conditions: (i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$, 30 min ; (ii) TMSOTf, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 1.5 h ; (iii) MeONa, 4:1 MeOH-THF, rt, 3 h ; (iv) n-Bu3 SnH , AIBN, $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux, 4 h .
ethylidene substituent from a less strained tetracyclic derivative, prior to the construction of the fifth ring. Accordingly, the (E)-ethylidenepiperidine 7b was stereoselectively prepared (30\%) in the usual way from tetracycle 6b and then chemoselectively converted (80\%) to sulfoxide $\mathbf{1 1}$ (mixture of stereoisomers at the sulfur atom) by sequential treatment with TFA (in order to protect the piperidine nitrogen) and m-CPBA (Scheme 4). Application of the above Pummerer reaction conditions (TMSOTf-DIPEA) to sulfoxide $\mathbf{1 1}$ worked equally well,

Scheme 5

rendering the pentacyclic sulfide 12 (mixture of C-6 stereoisomers) in 64\% yield. In contrast, when the rearrangement was induced with TFA-TFAA in refluxing dichloromethane, ${ }^{20}$ no cyclization was observed and a nearly equimolecular mixture of tetracyclic sulfides 7b and $\mathbf{1 4}$ was unexpectedly obtained. Formation of sulfide 14 can be rationalized as depicted in Scheme 5, by considering the nudleophilic displacement of the acyloxy group by the indole ring in the initially formed (acyloxy)sulfonium intermediate 11a to give a pentacydic sulfonium salt (11b), which undergoes a subsequent ring cleavage due to an external nucleophilic attack on the α-carbon. ${ }^{21}$ On the other hand, reaction of sulfurane 11c with TFA accounts for the formation of sulfide 7b. ${ }^{22}$

As expected, the opening of the seven-membered lactam ring of pentacycle $\mathbf{1 2}$ occurred smoothly on treatment with methanolic sodium methoxide. A subsequent radical desulfurization using $n-\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{AI}$ BN gave methyl geissoschizoate 13 in 52\% overall yield. Since 13 had previously been transformed into the alkaloid geissoschizine by formylation, ${ }^{9}$ a the above synthesis constitutes a stereocontrolled formal synthesis of this alkaloid. It is worth mentioning that attempts to induce desulfurization before the opening of ring E resulted in failure. Thus, treatment of $\mathbf{1 2}$ with Raney nickel or nickel boride gave complex mixtures due to the lactam ring opening and/or reduction of the ethylidene group, whereas the use of radical conditions $\left[n-\mathrm{Bu}_{3} \mathrm{SnH}\right.$ (or $\mathrm{Ph}_{3} \mathrm{SnH}$)-AIBN in boiling benzene] caused concomitant isomerization of the exocyclic double bond.
(20) (a) Takano, S.; Iida, H.; I nomata, K.; Ogasawara, K. Heterocycles 1993, 35, 47. (b) Bonjoch, J.; Catena, J.-L.; Valls, N. J. Org. Chem. 1996, 61, 7106.
(21) F or precedents of this abnormal Pummerer reaction, see: (a) Pyne, S. G.; Hajipour, A. R. Tetrahedron 1994, 50, 13501. (b) Amat, M.; Bennasar, M.-L.; Hadida, S.; Sufi, B. A.; Zulaica, E.; Bosch, J. Tetrahedron Lett. 1996, 37, 5217.(c) Shinohara, T.; Takeda, A.; Toda, J.; Ueda, Y.; K ohno, M. Sano, T. Chem. Pharm. Bull. 1998, 46, 918. For related processes, see: (d) Kaneko, T. J. Am. Chem. Soc. 1985, 107, 5490. (e) Terauchi, H.; Tanitame, A.; Tada, K.; Nishikawa, Y. Heterocycles 1996, 43, 1719. (f) Arnone, A.; Bravo, P.; Capelli, S.; Fronza, G.; Meille, S. V.; Zanda, M.; Cavicchio, G.; Crucianelli, M. J. Org. Chem. 1996, 61, 3375. (g) Volonterio, A.; Zanda, M.; Bravo, P.; Fronza, G.; Cavicchio, G.; Crucianelli, M. J . Org. Chem. 1997, 62, 8031.
(22) For a similar reduction, see: (a) Cardwell, J.; Hewitt, B.; Ladlow, M.; Magnus, P. J. Am. Chem. Soc. 1988, 110, 2242. See also: (b) Kawasaki, T.; Suzuki, H.; Sakata, I.; Nakanishi, H.; Sakamoto, M. Tetrahedron Lett. 1997, 38, 3251.

The access to the pentacyclic dilactam 2, a known precursor of the indole alkaloid akagerine, required the chemoselective oxidation of C-21 in the above tetracyclic or pentacyclic intermediates. For this purpose, we chose the model tetracycle 7a and pentacycle 12. However, only complex mixtures were obtained when these compounds were exposed to oxidizing reagents such as benzeneseIeninic anhydride (BSA) ${ }^{23}$ or ruthenium oxide. ${ }^{24}$ Because of this failure, we altered our initial synthetic plan to include a fluorine atom at the α-position of the starting pyridinium salt in the nucleophilic addition-cyclization sequence; in this manner, taking into account the easy hydrolysis of the C-F bond in 2-fluoropyridines, ${ }^{25}$ we thought that we would be able to gain access to tetracyclic 3,7-methano[1,4]diazonino[1,2-a]indole systems embodying the required 2-piperidone moiety present in $\mathbf{2}$.

We set out to explore the feasibility of this sequence using N-methyl pyridinium salt 15a as a model substrate (Scheme 6). Knowing that alkylation of 2-halopyridines with alkyl halides or tosylates is a difficult process, ${ }^{26}$ we prepared this compound in good yield by alkylation of 3-acetyl-2-fluoropyridine ${ }^{27}$ with methyl triflate. Exposure of pyridinium triflate 15a to the enolate derived from 1-acetylindole (3) gave 1,4-dihydro-2-fluoropyridine 16a in 25% yield. Its formation was evident in the ${ }^{1} \mathrm{H}$ NMR spectrum since the typical 1,4-dihydropyridine pattern was complicated by the ${ }^{1} \mathrm{H}-{ }^{19} \mathrm{~F}$ coupling. As expected, treatment of a methanolic solution of 1,4-dihydropyridine 16a with TsOH in the presence of lithium iodide brought about both cyclization upon the indole 2-position and concomitant cleavage of the C-F bond to give (50% yield) the tetracyclic Iactam 17a. Its spectroscopic data clearly showed that the acetyl group was in the enol form, presumably with a Z double bond configuration.

The next step in the synthesis was the stereoselective conversion of the acetyl group into the (E)-ethylidene substituent. This was initially planned through an elimination reaction, which would be effected upon the al cohol resulting from the chemoselective reduction of the enolized C-19 carbonyl group of 17a. Thus, controlled NaBH_{4} reduction of 17a gave the corresponding al cohol (mixture of stereoisomers), which was treated with Martin Sulfurane to give the desired (E)-ethylidene derivative 19a in moderate yield (30\%). Less satisfactorily, a DBU-induced elimination of the mesylate derived from the above alcohol (19,20-dihydro-17) gave a 2:1 mixture of 19a and the corresponding Z isomer in lower yield (21\%).

With the aim of improving both the yield and the stereoselectivity of the abovetransformation, we decided to evaluate if the (E)-ethylidene substituent could be generated by Pd^{0}-catalyzed reduction of the (Z)-vinyl

[^4]
Scheme 6a

17

${ }^{\text {a }}$ Reagents and conditions: (i) LDA, THF , $-30^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; (ii) $\mathrm{TsOH}-\mathrm{C}_{6} \mathrm{H}_{6}$, Lil, MeOH , rt, 2 h ; (iii) $\mathrm{Tf}_{2} \mathrm{O}, 1,8$-bis(dimethylamino)naphthalene, -40 to $0{ }^{\circ} \mathrm{C}$ (to $-10{ }^{\circ} \mathrm{C}$ from 17b), 1 h ; (iv) $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{LiCl}, \mathrm{THF}$, reflux, 1 h ; (v) m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78{ }^{\circ} \mathrm{C}$, 30 min ; (vi) TFAA, 2,6-di(tert-butyl)pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$, 30 min , then reflux, 1.5 h ; (vii) n-Bu3 $\mathrm{SnH}, \mathrm{AIBN}, \mathrm{C}_{6} \mathrm{H}_{6}$, reflux, 1 h .
triflate 18a, ${ }^{28}$ which was satisfactorily prepared (90\%) by treatment of enol 17a with triflic anhydride in the presence of 1,8-bis(dimethylamino)naphthalene. To our delight, reduction of 18a with $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}$ and LiCl stereoselectively gave 19 a in 76\% overall yield from 17a.

With a method in hand for the construction of the tetracyclic 4(E)-ethylidene-1,5-dioxo-3,7-methano[1,4]-diazonino[1,2-a]indole system, the development of an anal ogous synthetic sequence from 2-fluoro-1-[2-(phenylsulfanyl)ethyl]pyridinium triflate 15b should allow the access to the target pentacyclic dilactam $\mathbf{2}$ after closure of the C ring by Pummerer cyclization. The required pyridinium salt 15b was prepared by alkylation of 3-acetyl-2-fluoropyridine with 2-(phenylsulfanyl)ethyl triflate. As in the above N -methyl series, this salt was allowed to react with the enolate of 1-acetylindole (3) to give 1,4-dihydropyridine 16b (23\%), which was then cyclized to the tetracyclic enolic dilactam 17b (58\%). Subsequent Pd^{0}-catalyzed reduction of the corresponding triflate 18b with $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}$ stereoselectively afforded the (E)-ethylidene derivative 19b in 42% overall yield from
(28) Ritter, K. Synthesis 1993, 735.

17b. m-CPBA oxidation of sulfide 19b gave sulfoxide 20 (90%, mixture of stereoisomers), which smoothly underwent Pummerer rearrangement at room temperature by treatment with TFAA in dichloromethane in the presence of 2,6-di(tert-butyl)pyridine. ${ }^{22 a}$ When the presumed acyloxy sulfide intermediate was refluxed in dichloromethane, the desired pentacyclic sulfide 21 (a single stereoisomer, undetermined configuration at C-6) was obtained in 71\% yield. Finally, desulfurization of 21 with $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}-$ AIBN gave the target pentacyclic dilactam 2 (72\%). The ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{2}$ are in agreement with those previously reported. ${ }^{9 c, 12}$ Taking into account the previous work by Winterfeldt, ${ }^{12}$ the synthesis of 2 represents a stereoselective formal total synthesis of (\pm)-akagerine.

In summary, the results here presented significantly expand the scope and potential of the methodology for indole alkaloid synthesis based on the reactivity of N -alkylpyridinium salts with indole-containing enolates. For the first time, 1-acetylindole enolates are used as nucleophilic partners in this methodology: the formation of three crucial C-C bonds (1, C-15/C-16; 2, C-2/C-3; 3, $\mathrm{C}-6 / \mathrm{C}-7$) and subsequent opening of either the sevenmembered lactam E ring or the 2-piperidone D ring give access to two structurally different tetracyclic alkaloids, geissoschizine and akagerine, respectively. On the other hand, for the first time a 2-fluoropyridinium salt is used as the el ectrophilic partner in the above methodology, to ultimately generate a 2-piperidone moiety.

Experimental Section

Melting points are uncorrected. Unless otherwise noted, NMR spectra were recorded in CDCl_{3} solution at $300\left({ }^{1} \mathrm{H}\right)$ or $75 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$. Only noteworthy IR absorptions (cm^{-1}) are listed. TLC was carried out on SiO_{2} (silica gel $60 \mathrm{~F}_{254}$, Merck, $0.063-0.200 \mathrm{~mm})$. Flash chromatography was carried out on SiO_{2} (silica gel 60, SDS, $0.04-0.06 \mathrm{~mm}$). Drying of organic extracts during the workup of reactions was performed over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvents was accomplished under reduced pressure with a rotatory evaporator. All nonaqueous reactions were performed under an argon atmosphere. Microanalyses and HRMS were performed by Centro de Investigación y Desarrollo (CSIC), Barcelona. All compounds were synthesized in the racemic series.

Methyl 1-Benzyl-4-[2-(1-indolyl)-2-oxoethyl]-1,4-dihy-dropyridine-3(E)-acrylate (5a). LDA (10.7 mmol) was added to a solution of acetylindole $\mathbf{3}^{29}$ ($1 \mathrm{~g}, 6.29 \mathrm{mmol}$) in THF (75 mL) cooled at $-78^{\circ} \mathrm{C}$, and the resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . Then, pyridinium chloride $4 \mathrm{a}^{2 \mathrm{~b}}(1.8 \mathrm{~g}$, 6.29 mmol) was added in portions, and the mixture was allowed to rise to $-30^{\circ} \mathrm{C}$ and stirred at this temperature for 1 h 30 min . The reaction mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. Concentration of the organic extracts followed by flash chromatography ($3: 7$ hex-anes- $\mathrm{Et}_{2} \mathrm{O}$) gave dihydropyridine 5a: 0.57 g (22\%); IR (film) 1575, 1620, 1680, 1700; ${ }^{1} \mathrm{H}$ NMR 2.98 (dd, J = 14 and 10 Hz , 1 H), 3.15 (dd, J $=14,3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H})$, $4.34(\mathrm{~s}, 2 \mathrm{H}), 5.06$ (dd, J = 7.9, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, \mathrm{~J}=15.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.91(\mathrm{dd}, \mathrm{J}=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, \mathrm{~J}=1 \mathrm{~Hz}, 1 \mathrm{H})$, 6.60 (dd, J $=3.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.16 (m, 2H), 7.20-7.38 (m, 7H), $7.55(\mathrm{dm}, \mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $29.3(\mathrm{CH}), 42.5\left(\mathrm{CH}_{2}\right), 51.0\left(\mathrm{CH}_{3}\right), 57.2\left(\mathrm{CH}_{2}\right), 105.4(\mathrm{CH}), 107.3$ (CH), 108.6 (C), $108.8(\mathrm{CH}), 116.5(\mathrm{CH}), 120.6(\mathrm{CH}), 123.5$ (CH), 124.7 (CH), 124.8 (CH), 126.9 (CH), 127.8 (CH), 128.7 (CH), 128.9 (CH), 130.2 (C), 135.4 (C), 136.6 (C), 140.0 (CH), 145.3 (CH), 168.4 (C), 169.5 (C); HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ 412.1786, found 412.1785.

3-[(E)-2-(Methoxycarbonyl)vinyl]-1-[2-(phenylsulfanyl)ethyl]pyridinium Bromide (4b). A mixture of methyl (E)-

3-(3-pyridyl)acrylate ($1.6 \mathrm{~g}, 9.6 \mathrm{mmol}$) and 2-(phenylsulfanyl)ethyl bromide ${ }^{30}(2.5 \mathrm{~g}, 11.5 \mathrm{mmol})$ was heated at $90-100{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, and the resulting precipitate was filtered to give pyridinium bromide 4b: 3.1 g (86%); mp $124-125^{\circ} \mathrm{C}$ (acetone-MeOH); ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $3.71(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.80(\mathrm{t}, \mathrm{J}=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.72$ ($\mathrm{d}, \mathrm{J}=16 \mathrm{~Hz}, 1 \mathrm{H}$), $8.14(\mathrm{dd}, \mathrm{J}=7.9$ and $6 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{~d}, \mathrm{~J}$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.00(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 1 \mathrm{H}), 9.44(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{BrS}$: C, 53.82; H, 4.79; N, 3.69; S, 8.44. Found: C, 53.56; H, 4.83; N, 3.72; S, 8.34.

Methyl 4-[2-(1-I ndolyl)-2-oxoethyl]-1-[2-(phenyIsulfa-nyl)ethyl]-1,4-dihydro-pyridine-3(E)-acrylate (5b). Operating as in the preparation of dihydropyridine 5a, from acetylindole 3 ($0.5 \mathrm{~g}, 3.14 \mathrm{mmol}$) and pyridinium bromide 4b ($1.2 \mathrm{~g}, 3.14 \mathrm{mmol}$) was obtained dihydropyridine $\mathbf{5 b}$ after flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$): $0.28 \mathrm{~g}(20 \%) ; \mathrm{mp} 89-90^{\circ} \mathrm{C}$ (hexanes$\mathrm{Et}_{2} \mathrm{O}$); IR (film) 1576, 1607, 1664, 1700; ${ }^{1} \mathrm{H}$ NMR 2.99 (m, 3H), 3.10 (dd, J = 16, $3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.30(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.68 (s, 3H), $4.05(\mathrm{~m}, 1 \mathrm{H}), 5.01$ (dd, J $=7.7,5 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, \mathrm{~J}=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~d}, \mathrm{~J}$ $=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.35(\mathrm{~m}, 9 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $8.47(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $29.2(\mathrm{CH})$, $34.0\left(\mathrm{CH}_{2}\right), 42.3$ $\left(\mathrm{CH}_{2}\right), 51.0\left(\mathrm{CH}_{3}\right), 52.8\left(\mathrm{CH}_{2}\right), 105.4(\mathrm{CH}), 107.3(\mathrm{CH}), 108.4$ (C), 108.7 (CH), $116.5(\mathrm{CH}), 120.6(\mathrm{CH}), 123.5(\mathrm{CH}), 124.8$ (CH), 124.9 (CH), 126.7 (CH), 128.3 (CH), 129.1 (CH), 129.8 (CH), 130.2 (C), 134.3 (C), 135.4 (C), 139.5 (CH), 145.2 (CH), 168.4 (C), 169.5 (C). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 70.71$; H, 5.71; N, 6.10; S, 6.99. Found: C, 70.67; H, 5.70; N, 6.11; S, 6.91.

Methyl 6-Benzyl-1-oxo-2,3,6,7-tetrahydro-1H-3,7-meth-ano[1,4]diazonino[1,2-a]indole-4(E)-acrylate (6a). A solution of di hydropyridine $5 \mathbf{a}(0.12 \mathrm{~g}, 0.29 \mathrm{mmol})$ and Lil (68 mg , $0.51 \mathrm{mmol})$ in THF (20 mL) cooled at $-30^{\circ} \mathrm{C}$ was treated with enough of a saturated $\mathrm{C}_{6} \mathrm{H}_{6}$ solution of dry TsOH to bring the pH to 3.5-4, and the reaction mixture was stirred at room temperature for 1 h 30 min . The mixture was poured into a saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and extracted with AcOEt. Concentration of the organic extracts gave a crude residue, which was chromatographed ($98: 2 \mathrm{CHCl}_{3}-\mathrm{MeOH}$) to give $6 \mathbf{a}$: 60 mg (50\%); IR (film) 1584, 1697; ${ }^{1}$ H NMR 2.37 (m, 2H), 2.85 (dd, J = 13.9, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.03(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{dd}, \mathrm{J}=13.9,6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 4.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.52(\mathrm{~d}, \mathrm{~J}=$ $15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.40(\mathrm{~m}, 8 \mathrm{H})$, $7.71(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $25.5(\mathrm{CH})$, $31.5\left(\mathrm{CH}_{2}\right), 45.5\left(\mathrm{CH}_{2}\right)$, $51.0\left(\mathrm{CH}_{3}\right), 52.4(\mathrm{CH}), 56.2$ $\left(\mathrm{CH}_{2}\right), 104.5(\mathrm{CH}), 106.1(\mathrm{C}), 111.8(\mathrm{CH}), 115.8(\mathrm{CH}), 120.4$ (CH), $123.4(\mathrm{CH}), 125.6(\mathrm{CH}), 127.0(\mathrm{C}), 127.4(\mathrm{CH}), 128.1$ (CH), 128.9 (CH), 134.2 (C), 136.2 (C), 138.6 (C), 143.4 (CH), $145.7(\mathrm{CH}), 168.8(\mathrm{C}), 172.2(\mathrm{C})$; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ 412.1786, found 412.1786.

Methyl 1-Oxo-6-[2-(phenylsulfanyl)ethyl]-2,3,6,7-tet-rahydro-1H-3,7-methano[1,4]diazonino[1,2-a]indole-4(E)acrylate (6b). Operating as above, from dihydropyridine 5b ($0.25 \mathrm{~g}, 0.54 \mathrm{mmol}$), tetracycle 6b was obtained after flash chromtography ($4: 6$ hexanes- $\mathrm{Et}_{2} \mathrm{O}$): $0.1 \mathrm{~g}(40 \%)$; $\mathrm{mp} 210{ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O}$); IR (film) 1580, 1690; ${ }^{1} \mathrm{H}$ NMR $2.25(\mathrm{dm}, \mathrm{J}=13.5 \mathrm{~Hz}$, 1H), 2.35 (dt, J = 13.5, $1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.90(\mathrm{~m}, 5 \mathrm{H}), 3.27$ (m, $1 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 4.62(\mathrm{dt}, \mathrm{J}=4.9,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.50 (d, J $=15.2$ Hz, 1H), $6.30(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.45$ $(\mathrm{m}, 8 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $25.5(\mathrm{CH}), 31.3\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 45.5\left(\mathrm{CH}_{2}\right), 51.2\left(\mathrm{CH}_{3}\right)$, $51.4\left(\mathrm{CH}_{2}\right), 53.9(\mathrm{CH}), 104.6(\mathrm{CH}), 106.5(\mathrm{C}), 111.4(\mathrm{CH}), 115.7$ (CH), 120.4 (CH), $123.5(\mathrm{CH}), 125.6(\mathrm{CH}), 127.0(\mathrm{CH}), 127.6$ (C), 129.2 (CH), 130.4 (CH), 134.5, (C), 134.9 (C), 138.5 (C), $142.5(\mathrm{CH}), 145.5(\mathrm{CH}), 168.8$ (C), 172.0 (C). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}: ~ \mathrm{C}, 70.03 ; \mathrm{H}, 5.77 ; \mathrm{N}, 6.05 ; \mathrm{S}, 6.92$. Found: C, 69.90; H, 5.64; N, 6.06; S, 6.71.

6-Benzyl-4(E)-ethylidene-1-oxo-2,3,4,5,6,7-hexahydro-1H-3,7-methano[1,4]diazonino[1,2-a]indole (7a). A suspension of tetracycle $\mathbf{6 a}(148 \mathrm{mg}, 0.36 \mathrm{mmol})$ in $\mathrm{MeOH}(8.5$
(30) Yamamoto, T.; Kakimoto, M.; Okawara, M. Bull. Chem. Soc. J pn. 1979, 52, 841.
mL) and 2.5 N aqueous $\mathrm{HCl}(17 \mathrm{~mL})$ was refluxed for 2 h and then concentrated. The residue was dissolved in MeOH (20 $\mathrm{mL})$, treated with $\mathrm{NaBH}_{4}\left(0.1 \mathrm{~g}\right.$, excess) at $0^{\circ} \mathrm{C}$, and stirred at this temperature for 1 h . The solvent was evaporated, and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic extracts were dried and concentrated, and the residue was chromatographed (flash, $\mathrm{Et}_{2} \mathrm{O}$) to give 7a: 42 mg (33\%); IR (film) 1693; ${ }^{1} \mathrm{H}$ NMR 1.68 $(\mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.18(\mathrm{dt}, \mathrm{J}=13.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~m}$, $1 \mathrm{H}), 3.06(\mathrm{~m}, 4 \mathrm{H}), 3.24$ (masked, 1H), 3.22 and $3.36(2 \mathrm{~d}, \mathrm{~J}=$ $13.9 \mathrm{~Hz}, 2 \mathrm{H}$), 4.26 (dd, J $=5.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{q}, \mathrm{J}=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}$, 1H), $8.29(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $12.3\left(\mathrm{CH}_{3}\right), 29.4(\mathrm{CH})$, $34.8\left(\mathrm{CH}_{2}\right), 47.2\left(\mathrm{CH}_{2}\right), 54.0\left(\mathrm{CH}_{2}\right), 56.0(\mathrm{CH}), 58.8\left(\mathrm{CH}_{2}\right), 112.0$ (CH), 115.9 (CH), $120.0(\mathrm{CH}), 120.4(\mathrm{CH}), 123.3(\mathrm{CH}), 124.6$ (CH), 126.9 (CH), 128.0 (C), 128.3 (CH), 128.6 (CH), 135.0 (C), 135.3 (C), 137.9 (C), 138.5 (C), 174.2 (C); HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O} 356.1888$, found 356.1886.

4(E)-E thylidene-1-oxo-6-[2-(phenylsulfanyl)ethyl]-2,3,4,5,6,7-hexahydro-1H-3,7-methano[1,4]diazonino[1,2a]indole (7b). Operating as above, from tetracycle 6b (0.5 g , 1.1 mmol) was obtained the ethylidene derivative $\mathbf{7 b}$ after flash chromatography: 132 mg (30\%); mp $142{ }^{\circ} \mathrm{C}$ (hexanes-AcOEt); ${ }^{1} \mathrm{H}$ NMR 1.67 (dd, J $\left.=6.9,1.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 2.18(\mathrm{dt}, \mathrm{J}=13.4,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~m}, 6 \mathrm{H}), 3.22(\mathrm{br} \mathrm{s}$ $1 \mathrm{H}), 4.25(\mathrm{dd}, \mathrm{J}=5.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.30(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.35(\mathrm{~m}, 7 \mathrm{H}), 7.47(\mathrm{dm}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 8.25 (dd, J $=8.2,0.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $12.3\left(\mathrm{CH}_{3}\right), 29.2(\mathrm{CH})$, $31.7\left(\mathrm{CH}_{2}\right), 34.6\left(\mathrm{CH}_{2}\right), 47.0\left(\mathrm{CH}_{2}\right)$, $53.6\left(\mathrm{CH}_{2}\right)$, $54.0\left(\mathrm{CH}_{2}\right), 56.2$ $(\mathrm{CH}), 111.8(\mathrm{CH}), 115.8(\mathrm{CH}), 120.1(\mathrm{CH}), 120.8(\mathrm{CH}), 123.3$ (CH), 124.7 (CH), 125.9 (CH), 128.2 (C), 128.8 (CH), 129.3 (CH), 134.6 (C), 135.2 (C), 136.3 (C), 137.8 (C), 174.0 (C). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OS}: \mathrm{C}, 74.59 ; \mathrm{H}, 6.51 ; \mathrm{N}, 6.96 ; \mathrm{S}, 7.96$. Found: C, 74.35; H, 6.60; N, 6.70; S, 7.60.

Methyl 13-Oxo-7-(phenylsulfanyl)-1,2,5,6,7,12a-hexahy-dro-2,12-ethanoindolo[2,3-a]quinolizine-3(E)-acrylate (9). m-CPBA ($22 \mathrm{mg}, 0.12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was slowly added to a solution of sulfide $\mathbf{6 b}(50 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . The reaction was quenched with solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ (excess), and the stirring was continued at $-78{ }^{\circ} \mathrm{C}$ for 10 min . The resulting mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $\mathrm{H}_{2} \mathrm{O}$. The organic solution was concentrated, and the residue was chromatographed (flash, AcOEt) to give sulfoxide 8 as a 1:1 mixture of stereoisomers: 46 mg (89%).

A solution of the above sulfoxides 8 ($30 \mathrm{mg}, 0.063 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ containing diisopropylethylamine (0.045 $\mathrm{mL}, 0.25 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ was treated with trimethylsilyl triflate $(0.045 \mathrm{~mL}, 0.25 \mathrm{mmol})$, and the mixture was stirred at room temperature for 1.5 h . The mixture was poured into 10% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After concentration of the extracts and flash chromatography ($6: 4$ hexanesAcOEt) of the residue, pentacycle 9 was obtained as a 3:1 mixture of stereoisomers: 17 mg (60\%); IR (KBr) 1583, 1703; ${ }^{1} \mathrm{H}$ NMR (major isomer) 2.25 (dm, J $=14.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.48 (dd, $\mathrm{J}=14.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{br} \mathrm{d}, \mathrm{J}=17 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~m}$, $1 \mathrm{H}), 3.30(\mathrm{dd}, \mathrm{J}=17,10 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=$ $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ (dd, J = 14.8, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.62(\mathrm{dd}, \mathrm{J}=5.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58$ $(\mathrm{s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 5 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.81(\mathrm{dm}, \mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dm}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $23.2(\mathrm{CH}), 27.2\left(\mathrm{CH}_{2}\right), 41.8(\mathrm{CH}), 46.6\left(\mathrm{CH}_{2}\right), 51.5\left(\mathrm{CH}_{3}\right), 52.7$ $(\mathrm{CH}), 57.2\left(\mathrm{CH}_{2}\right), 107.5(\mathrm{CH}), 113.0(\mathrm{C}), 114.5(\mathrm{CH}), 117.4(\mathrm{C})$, 119.7 (CH), $123.6(\mathrm{CH}), 125.3(\mathrm{CH}), 127.8(\mathrm{CH}), 127.9(\mathrm{C})$, 129.5 (CH), 131.9 (CH), 134.5 (C), 136.2 (C), 136.7 (C), 145.5 (CH), 146.3 (CH), 168.2 (C), 172.9 (C). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 71.03 ; \mathrm{H}, 5.30 ; \mathrm{N}, 6.14$. Found: C, 69.92; H, 5.31; N, 5.86 .

Methyl 13-Oxo-1,2,5,6,7,12a-hexahydro-2,12-ethanoin-dolo[2,3-a]quinolizine-3(E)-acrylate (10). A solution of sulfide 9 ($160 \mathrm{mg}, 0.35 \mathrm{mmol}$), $\mathrm{Ph}_{3} \mathrm{SnH}(0.24 \mathrm{~g}, 0.70 \mathrm{mmol})$, and AIBN (5 mg) in $\mathrm{C}_{6} \mathrm{H}_{6}(12 \mathrm{~mL})$ was refluxed for 1 h . The mixture was concentrated, and the residue was chromatographed (hexanes-AcOEt, increasing polarity) to give pentacycle 10: 97 mg (80\%); mp $206{ }^{\circ} \mathrm{C}$ (acetone-Et $\mathrm{t}_{2} \mathrm{O}$); IR (KBr)

1583, 1690; ${ }^{1} \mathrm{H}$ NMR 2.33 (dm, J $=14.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47 (dd, J $=14.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{~d}, \mathrm{~J}=17.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.03(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{dd}, \mathrm{J}=17.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H})$, $3.66(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.32(\mathrm{~d}, \mathrm{~J}=15.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 3 \mathrm{H})$, $8.07(\mathrm{dm}, \mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $20.9\left(\mathrm{CH}_{2}\right), 23.7(\mathrm{CH}), 27.5$ $\left(\mathrm{CH}_{2}\right), 45.4\left(\mathrm{CH}_{2}\right), 49.8\left(\mathrm{CH}_{2}\right), 51.0\left(\mathrm{CH}_{3}\right), 52.3(\mathrm{CH}), 107.2$ (CH), 113.3 (C), 115.0 (CH), 117.4 (CH), 117.6 (C), 123.6 (CH), 124.9 (CH), 128.8 (C), 135.4 (C), 136.4 (C), 146.0 (CH), 146.9 $(\mathrm{CH}), 168.2(\mathrm{C}), 172.5(\mathrm{C})$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}$, 72.40; H, 5.79; N, 8.04. Found: C, 72.45; H, 5.80; N, 8.01.

Pummerer Rearrangement of Sulfoxides 11. TFA (0.022 $\mathrm{mL}, 0.25 \mathrm{mmol}$) was slowly added to a sol ution of sulfide $\mathbf{7 b}$ ($90 \mathrm{mg}, 0.22 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min . m-CPBA ($45 \mathrm{mg}, 0.25$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was slowly added at $-78^{\circ} \mathrm{C}$, and the stirring was continued for 15 min . The reaction was quenched with solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ (excess), and the mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 10 min , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed with $\mathrm{H}_{2} \mathrm{O}$. The organic solution was concentrated, and the residue was chromatographed (flash, 98:2 AcOEt-DEA) to give sulfoxide 11 as a 1:1 mixture of stereoisomers: 74 mg (80%).
Method A. TFA ($0.030 \mathrm{~mL}, 0.38 \mathrm{mmol}$) and TFAA (0.053 $\mathrm{mL}, 0.38 \mathrm{mmol}$) were added at room temperature to a sol ution of sulfoxides $\mathbf{1 1}(40 \mathrm{mg}, 0.096 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. After being refluxed for 5 h , the mixture was cooled, poured into 10% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried and concentrated, and the residue was chromatographed (flash, hexanes-AcOEt and ACOEt). The initial elution gave sulfide 7b: 10 mg (26\%). Further elution gave 4(E)-ethylidene-6-(2-hydroxyethyl)-1-oxo-8-(phenyl-sulfanyl)-2,3,4,5,6,7-hexahydro-1H-3,7-methano[1,4]-diazonino[1,2-a]indole (14): 11 mg (28\%); IR (film) 1690; ${ }^{1} \mathrm{H}$ NMR $1.71(d d, \mathrm{~J}=6.8,1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.12(\mathrm{~m}, 2 \mathrm{H}), 2.43$ and $2.64(2 \mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{~m}, 4 \mathrm{H}, 16-\mathrm{H}), 3.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.42$ and $3.51(2 \mathrm{~m}, 2 \mathrm{H}), 5.01(\mathrm{dd}, \mathrm{J}=5.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{q}, \mathrm{J}=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.05-7.40(\mathrm{~m}, 7 \mathrm{H}), 7.50(\mathrm{dm}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.24$ $(\mathrm{dm}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $12.3\left(\mathrm{CH}_{3}\right), 29.7(\mathrm{CH}), 34.5$ $\left(\mathrm{CH}_{2}\right), 47.2\left(\mathrm{CH}_{2}\right), 53.3(\mathrm{CH}), 53.4\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{2}\right), 57.8\left(\mathrm{CH}_{2}\right)$, $115.6(\mathrm{CH}), 120.0(\mathrm{CH}), 121.3(\mathrm{CH}), 123.9(\mathrm{CH}), 125.4(\mathrm{CH})$, 125.8 (CH), 126.1 (CH), 128.8 (C), 128.9 (CH), 129.3 (C), 134.2 (C), 136.8 (C), 136.9 (C), 140.0 (C), 174.2 (C).

Method B. Sulfoxides $\mathbf{1 1}(100 \mathrm{mg}, 0.24 \mathrm{mmol})$ in dry CH_{2-} $\mathrm{Cl}_{2}(10 \mathrm{~mL})$ containing di isopropylethylamine ($0,17 \mathrm{~mL}, 0.96$ mmol) at $0{ }^{\circ} \mathrm{C}$ were treated with trimethylsilyl triflate (0,17 $\mathrm{mL}, 0.96 \mathrm{mmol}$), and the mixture was stirred at room temperature for 1.5 h . The mixture was poured into 10% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried and concentrated to give 3(E)-ethylidene-13-oxo-7-(phenylsulfanyl)-2,12-ethanoindolo[2,3-a]quinolizidine ($\mathbf{1 2}, 62 \mathrm{mg}, 64 \%, 3: 1$ epi meric mixture). Flash chromatography (AcOEt) allowed the isolation of major epimer: IR (KBr) 1720; ${ }^{1} \mathrm{H}$ NMR (300 MHz , biogenetic numbering, assignments aided by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMQC) 1.60 (dd, J $=6.8,2 \mathrm{~Hz}, 3 \mathrm{H}, 18-$ H), 2.11 (dt, J $=14.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{H}$), $2.39(\mathrm{dd}, \mathrm{J}=14.5$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H}), 2.53(\mathrm{dt}, \mathrm{J}=14.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{H}), 3.07$ (dd, J = 14.5, $11.6 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H}$), 3.10 (d, J $=13.2 \mathrm{~Hz}, 1 \mathrm{H}$, $21-\mathrm{H}), 3.39$ (m, 1H, 15-H), 3.50 (d, J = $15.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.03$ (br d, J $=13.2 \mathrm{~Hz}, 1 \mathrm{H}, 21-\mathrm{H}$), 4.25 (br s, 1H, 3-H), 4.55 (dd, J $=6.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 5.40(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 19-\mathrm{H}), 7.25-$ $7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 7.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.81(\mathrm{dm}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, $9-\mathrm{H}), 7.93(\mathrm{dm}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 12-\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR 12.5 (C-18), 25.9 (C-15), 30.5 (C-14), 39.8 (C-6), 45.4 (C-16), 51.9 (C-21), 53.6 (C-3), 58.0 (C-5), 114.2 (C-12), 117.9 (C-7), 120.0 (C-9), 120.9 (C-19), 123.3 (C-10), 124.9 (C-11), 127.0 (Ph), 128.5 (C8), 129.3, 131.1 (Ph), 136.0, 136.2, 136.2 (Ph, C-2, C-20), 137.4 (C-13), 174.1 (CO).
Methyl (2RS, 12bSR)-3(E)-Ethylideneindolo[2,3-a]quin-olizidine-2-acetate [Methyl Geissoschizoate (13)]. ${ }^{\text {hh }} \mathrm{Me}$ ONa ($5.3 \mathrm{mg}, 0.097 \mathrm{mmol}$) was added to a solution of pentacycle $12(26 \mathrm{mg}, 0.065 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ and THF (0.5 mL), and the resulting mixture was stirred at room temperature for 3 h . The reaction mixture was poured into aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with AcOEt. The organic extracts were dried and concentrated. The residue was dis-
sol ved in $\mathrm{C}_{6} \mathrm{H}_{6}(4 \mathrm{~mL})$, and the resulting solution was treated with $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}(32 \mathrm{~mL}, 0.12 \mathrm{mmol})$ and AIBN (2 mg) at reflux temperature for 4 h . The mixture was concentrated, and the residue was chromatographed (hexanes-AcOEt, increasing polarity) to give 13: $11 \mathrm{mg}(52 \%)$; ${ }^{1} \mathrm{H}$ NMR (300 MHz) 1.65 (dd, J $=6.8,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.17(\mathrm{~m}, 3 \mathrm{H}), 2.31(\mathrm{dt}, \mathrm{J}=14.2,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.64(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-3.20$ $(\mathrm{m}, 3 \mathrm{H}), 3.27(\mathrm{ddd}, \mathrm{J}=13,6.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{br} \mathrm{d}, \mathrm{J}=$ $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.47(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 8.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $12.6\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{2}\right), 30.5$ $\left(\mathrm{CH}_{2}\right), 31.1(\mathrm{CH}), 37.2\left(\mathrm{CH}_{2}\right), 51.4\left(\mathrm{CH}_{2}\right), 51.8\left(\mathrm{CH}_{3}\right), 52.7(\mathrm{CH})$, $53.2\left(\mathrm{CH}_{2}\right), 107.6(\mathrm{C}), 111.1(\mathrm{CH}), 118.0(\mathrm{CH}), 119.4(\mathrm{CH}), 120.5$ (CH), 121.4 (CH), 127.9 (C), 133.9 (C), 135.9 (C), 136.1 (C), 174.0 (C).

3-Acetyl-2-fluoro-1-methylpyridiniumTrifluoromethanesulfonate (15a). Methyl trifluoromethanesulfonate $(2.4 \mathrm{~mL}$, 21.7 mmol) was added to 3-acetyl-2-fluoropyridine ${ }^{27}$ ($2 \mathrm{~g}, 14.4$ mmol). The resulting mixture was diluted with anhydrous CH_{2-} $\mathrm{Cl}_{2}(2 \mathrm{~mL})$ and stirred at room temperature for 15 min . The precipitate was filtered and washed with anhydrous $\mathrm{Et}_{2} \mathrm{O}$ to give pyridinium triflate 15a ($3.92 \mathrm{~g}, 90 \%$), which was immediately used in the next step without further purification.

3-Acetyl-2-fluoro-4-[2-(1-indolyl)-2-oxoethyl]-1-methyl-1,4-dihydropyridine (16a). Operating as in the preparation of 1,4-dihydropyridines 5, from acetylindole 2 ($0.5 \mathrm{~g}, 3.14$ mmol) and pyridinium triflate $15 \mathrm{a}(0.95 \mathrm{~g}, 3.14 \mathrm{mmol})$ was obtained 1,4-dihydropyridine 16a ($245 \mathrm{mg}, 25 \%$) after flash chromatography (95:3:2 Et $\mathrm{E}_{2} \mathrm{O}$-acetone-DEA): mp $138{ }^{\circ} \mathrm{C}$ (Et_{2} O-hexanes); IR (KBr) 1690; ${ }^{1} \mathrm{H}$ NMR 2.37 ($\mathrm{d}, \mathrm{J}=7 \mathrm{~Hz}$, $3 \mathrm{H}), 2.71(\mathrm{dd}, \mathrm{J}=13.5,10 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 3 \mathrm{H})$, 3.28 (dd, J $=13.5,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.16(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~m}, 1 \mathrm{H})$, 5.80 (dd, J $=7.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ $(\mathrm{m}, 2 \mathrm{H}), 7.55(\mathrm{dm}, \mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.48(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $30.5\left(\mathrm{CH}_{3}\right), 33.7(\mathrm{CH}), 34.3$ $\left(\mathrm{CH}_{3}\right), 44.4\left(\mathrm{CH}_{2}\right), 91.8(\mathrm{C}), 108.3(\mathrm{CH}), 108.9(\mathrm{CH}), 116.6(\mathrm{CH})$, 120.6 (CH), $123.5(\mathrm{CH}), 124.7(\mathrm{CH}), 126.1(\mathrm{CH}), 128.5(\mathrm{CH})$, 130.5 (C), 135.5 (C), 160.4 (C, J $=266.8 \mathrm{~Hz}$), 169.5 (C), 193.3 (C). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}$: C, 69.22; $\mathrm{H}, 5.48$; $\mathrm{N}, 8.97$. Found: C, 69.20; H, 5.44; N, 8.98.

4-Acetyl-6-methyl-1,5-dioxo-2,3,4,5,6,7-hexahydro-1H-3,7-methano[1,4]diazonino[1,2-a]indole (17a). A solution of dihydropyridine $\mathbf{1 6 a}(0.38 \mathrm{~g}, 1.21 \mathrm{mmol})$ and Lil $(0.27 \mathrm{~g}, 2$ mmol) in $\mathrm{MeOH}(20 \mathrm{~mL})$ cooled at $-40^{\circ} \mathrm{C}$ was treated with enough of a saturated $\mathrm{C}_{6} \mathrm{H}_{6}$ solution of anhydrous TsOH to bring the pH to $2-3$, and the mixture was stirred at room temperature for 2 h . The solvent was evaporated, and the residue was directly purified by flash chromatography (95:5 $\mathrm{Et}_{2} \mathrm{O}$-DEA) to give tetracycle 17a: 188 mg (50\%); mp $161^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O}$); IR (KBr) 1596, 1627, 1698; ${ }^{1} \mathrm{H}$ NMR 2.10 (s, 3H), 2.40 (dt, J = 13.5, 2.2 Hz, 1H), $2.54(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 3.02$ (dd, $\mathrm{J}=13.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ (ddd, J = 13.3, $6.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.25(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{dm}, \mathrm{J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 7.22-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{dm}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $1 \mathrm{H}), 15.21(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $18.4\left(\mathrm{CH}_{3}\right), 29.4(\mathrm{CH}), 32.1\left(\mathrm{CH}_{3}\right)$, $32.4\left(\mathrm{CH}_{2}\right), 47.7\left(\mathrm{CH}_{2}\right), 57.5(\mathrm{CH}), 96.7(\mathrm{C}), 112.6(\mathrm{CH}), 115.5$ (CH), $120.5(\mathrm{CH}), 123.6(\mathrm{CH}), 125.8(\mathrm{CH}), 127.7(\mathrm{C}), 134.7(\mathrm{C})$, 138.5 (C), 168.9 (C), 171.7 (C), 172.1 (C). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 69.66 ; \mathrm{H}, 5.85 ; \mathrm{N}, 9.03$. Found: C, $69.56 ; \mathrm{H}$, 5.86; N, 9.03.

4(E)-Ethylidene-6-methyl-1,5-dioxo-2,3,4,5,6,7-hexahy-dro-1H-3,7-methano[1,4]diazonino[1,2-a]indole (19a). Method A. NaBH_{4} ($12.2 \mathrm{mg}, 0.32 \mathrm{mmol}$) was added to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of tetracycle $17(50 \mathrm{mg}, 0.16 \mathrm{mmol})$ in 5:2:1 $\mathrm{EtOH}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$, and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h . The solvents were removed, and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and AcOEt and extracted with AcOEt. E vaporation of the organic extracts gave a crude alcohol (mixture of stereoisomers). A solution of Martin Sulfurane ($320 \mathrm{mg}, 0.48 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was slowly added to a solution of the above al cohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ cooled at $-78{ }^{\circ} \mathrm{C}$, and the mixture was allowed to rise to room temperature with stirring. The mixture was poured into a saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ sol ution and extracted with $\mathrm{CH}_{2}-$ Cl_{2}. Evaporation of the organic extracts followed by flash
chromatography gave 19a: 14 mg (30\%); IR (film) 1608, 1660, 1698 ; ${ }^{1} \mathrm{H}$ NMR $1.90(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.39(\mathrm{dt}, \mathrm{J}=13.4,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.58(\mathrm{dt}, \mathrm{J}=13.4,5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{dd}$, $\mathrm{J}=13.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, \mathrm{J}=13.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~m}$, $1 \mathrm{H}), 4.75(\mathrm{dd}, \mathrm{J}=5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{q}, \mathrm{J}=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $13.8\left(\mathrm{CH}_{3}\right), 28.9(\mathrm{CH})$, $32.1\left(\mathrm{CH}_{2}\right), 32.2$ $\left(\mathrm{CH}_{3}\right), 46.0\left(\mathrm{CH}_{2}\right), 57.1(\mathrm{CH}), 112.9(\mathrm{CH}), 115.6(\mathrm{CH}), 120.5$ (CH), 123.7 (CH), 125.7 (CH), 127.8 (C), $130.0(\mathrm{C}), 135.1(\mathrm{C})$, 136.3 (CH), 138.3 (C), 163.0 (C), 171.0 (C); HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} 294.1368$, found 294.1369. When the above al cohol was converted into the corresponding mesylate by treatment with mesyl chloride ($0.039 \mathrm{~mL}, 0.45 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.08 \mathrm{~mL}$, 0.56 mmol) at $0^{\circ} \mathrm{C}$ for 1.5 h and then treated with DBU (0.14 $\mathrm{mL}, 0.96 \mathrm{mmol})$ in 1:1 DMSO-toluene (4 mL) at $40^{\circ} \mathrm{C}$ for 3 h, a 2:1 mixture of 19a and the corresponding Z isomer was obtained: 10 mg (21\%). Z isomer: IR (film) 1615, 1659, 1699; ${ }^{1} \mathrm{H}$ NMR 2.22 ($\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), $2.36(\mathrm{dm}, \mathrm{J}=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.50(\mathrm{dm}, \mathrm{J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~m}, 3 \mathrm{H}), 4.76$ (d, $\mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 7.28$ (m, 2H), 7.52 (dd, J $=7,1 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $15.9\left(\mathrm{CH}_{3}\right), 32.0\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{3}\right), 36.5(\mathrm{CH}), 46.7$ $\left(\mathrm{CH}_{2}\right), 56.4(\mathrm{CH}), 112.8(\mathrm{CH}), 115.7(\mathrm{CH}), 120.5(\mathrm{CH}), 123.7$ (CH), 125.7 (CH), 127.9 (C), 130.5 (C), 135.6 (C), 137.8 (C), 138.9 (CH), 163.7 (C), 171.0 (C); HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ 294.1368, found 294.1360.

Method B. $\mathrm{Tf}_{2} \mathrm{O}$ ($\left.0.035 \mathrm{~mL}, 0.21 \mathrm{mmol}\right)$ was slowly added to a stirred sol ution of tetracycle 17a ($60 \mathrm{mg}, 0.19 \mathrm{mmol}$) and 1,8-bis(dimethylamino)naphthalene ($46 \mathrm{mg}, 0.21 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$. The mixture was allowed to rise to $0^{\circ} \mathrm{C}$ in a period of 1 h . The solvent was evaporated, and the resulting residue was directly purified by flash chromatography (hexane-AcOEt, increasing polarity) to give triflate 18a: $77 \mathrm{mg}(90 \%)$; ${ }^{1} \mathrm{H}$ NMR (300 MHz) $2.22(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{dm}, \mathrm{J}=$ $14.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.62 (ddd, J = 14.1, 6.1, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.01 (s, $3 \mathrm{H}), 3.11(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ $(\mathrm{s}, 1 \mathrm{H}), 7.25-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, \mathrm{~J}$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{33} \mathrm{C}$ NMR $18.7\left(\mathrm{CH}_{3}\right)$, $31.6(\mathrm{CH}), 31.9\left(\mathrm{CH}_{2}\right)$, $33.5\left(\mathrm{CH}_{3}\right), 44.0\left(\mathrm{CH}_{2}\right), 56.4(\mathrm{CH}), 114.4(\mathrm{CH}), 116.4(\mathrm{CH}), 121.3$ $(\mathrm{CH}), 124.6(\mathrm{CH}), 126.6(\mathrm{CH}), 128.4(\mathrm{C}), 135.1(\mathrm{C}), 138.3(\mathrm{C})$, 149.4 (C), 160.3 (C), 169.9 (C). $\mathrm{LiCl}(22 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4 \mathrm{mg}, 0.003 \mathrm{mmol})$ were added to a solution of triflate 18a ($77 \mathrm{mg}, 0.17 \mathrm{mmol}$) in THF (2 mL) at room temperature. $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}(99 \mathrm{mg}, 0.091 \mathrm{~mL}, 0.33 \mathrm{mmol}$) was slowly added, and the resulting mixture was refluxed for 1 h . Additional $\mathrm{LiCl}(22 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4 \mathrm{mg}, 0.003$ mmol) were added, and the mixture was refluxed for an additional period of 2 h . The mixture was concentrated, and the residue was purified by flash chromatography (hexanesAcOEt, increasing polarity) to give 19a: 44 mg (85%).

3-Acetyl-2-fluoro-1-[(2-phenylsulfanyl)ethyl] Trifluoromethanesulfonate (15b). $\mathrm{Tf}_{2} \mathrm{O}(0.67 \mathrm{~g}, 0.4 \mathrm{~mL}, 2,4 \mathrm{mmol})$ was added to a solution of 2-(phenylsulfanyl)ethanol (0.30 g , $0.27 \mathrm{~mL}, 2 \mathrm{mmol}$) and triethylamine ($0.26 \mathrm{~g}, 0.37 \mathrm{~mL}, 2.4$ mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The solvent was removed to give crude 2-(phenylsulfanyl)ethyl trifluoromethanesulfonate (moisture sensitive). A mixture of the above triflate and 3-acetyl-2-fluoropyridine ${ }^{27}$ ($0.14 \mathrm{~g}, 1 \mathrm{mmol}$) was stirred at room temperature for 12 h . The resulting oil was washed with anhydrous $\mathrm{Et}_{2} \mathrm{O}$ to give pyridinium triflate $\mathbf{1 5 b}$ ($0.35 \mathrm{~g}, 90 \%$), which was immediately used in the next step without further purification.
3-Acetyl-2-fluoro-4-[2-(1-indolyl)-2-oxoethyl]-1-[2-(phe-nylsulfanyl)ethyl]-1,4-dihydropyridine (16b). Operating as in the preparation of 1,4-dihydropyridines 5 and 16a, from acetylindole $\mathbf{2}(0.14 \mathrm{~g}, 0.89 \mathrm{mmol})$ and pyridinium triflate 15b ($0.35 \mathrm{~g}, 0.89 \mathrm{mmol}$) was obtained 1,4-dihydropyridine 16b (90 $\mathrm{mg}, 23 \%$) after flash chromatography (hexanes-Et 2 O , increasing polarity); IR (KBr) 1582, 1681, 1698; ${ }^{1} \mathrm{H}$ NMR 2.36 (d, J = $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.77(\mathrm{dd}, \mathrm{J}=13.9,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 3.22$ (dd, J $=13.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.43 and $3.61(2 \mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{~m}$, 1 H), $5.11(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{dd}, \mathrm{J}=7.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=$ $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.40(\mathrm{~m}, 7 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86$ $(\mathrm{d}, \mathrm{J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 30.7
$\left(\mathrm{CH}_{3}\right), 33.0(\mathrm{CH}), 33.3\left(\mathrm{CH}_{2}\right), 43.9\left(\mathrm{CH}_{2}\right), 46.8\left(\mathrm{CH}_{2}\right), 92.3(\mathrm{C})$, $108.9(\mathrm{CH}), 108.9(\mathrm{CH}), 116.6(\mathrm{CH}), 120.6(\mathrm{CH}), 123.6(\mathrm{CH})$, $124.8(\mathrm{CH}), 126.0(\mathrm{CH}), 127.0(\mathrm{CH}), 127.4(\mathrm{CH}), 129.2(\mathrm{CH})$, 130.0 (CH), 130.5 (C), 134.0 (C), 135.5 (C), 159.9 (C, J = 266.8 Hz), $169.5(\mathrm{C}), 193.4(\mathrm{C}) ;$ HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{FS}$ 434.1464, found 434.1468. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{FS}$: C, 69.10; H, 5.34; N, 6.45; S, 7.38. Found: C, 68.83; H, 5.50; N, 6.33; S, 7.41 .

4-Acetyl-1,5-dioxo-6-[(2-phenylsulfanyl)ethyl]-2,3,4,5,6,7-hexahydro-1H-3,7-methano[1,4]diazonino[1,2-a]indole (17b). Dihydropyridine 16 b ($0.1 \mathrm{~g}, 0.23 \mathrm{mmol}$) in dry MeOH (12 mL) was allowed to react with a saturated $\mathrm{C}_{6} \mathrm{H}_{6}$ solution of anhydrous TsOH and Lil ($52 \mathrm{mg}, 0.39 \mathrm{mmol}$) and worked up as described for the preparation of tetracycle 17a. After flash chromatography (hexanes-AcOEt, increasing pol arity), tetracycle 17b was obtained: 58 mg (58%); IR (film) 1594, 1626, 1701; ${ }^{1 H}$ NMR 2.09 (s, 3H), $2.32(\mathrm{dm}, \mathrm{J}=14 \mathrm{~Hz}, 1 \mathrm{H})$, $2.44(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{br} \mathrm{d}, \mathrm{J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15$ $(\mathrm{m}, 4 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H})$, $7.26-7.33(\mathrm{~m}, 7 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, \mathrm{~J}=8.2$ $\mathrm{Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $18.4\left(\mathrm{CH}_{3}\right), 29.3(\mathrm{CH}), 30.7\left(\mathrm{CH}_{2}\right), 32.3$ $\left(\mathrm{CH}_{2}\right), 44.4\left(\mathrm{CH}_{2}\right), 47.7\left(\mathrm{CH}_{2}\right), 56.9(\mathrm{CH}), 96.7(\mathrm{C}), 112.5(\mathrm{CH})$, $115.5(\mathrm{CH}), 120.6(\mathrm{CH}), 123.7(\mathrm{CH}), 125.8(\mathrm{CH}), 126.3(\mathrm{CH})$, 129.2 (CH), 129.2 (CH), 129.3 (C), 135.0 (C), 135.2 (C), 138.4 (C), 168.9 (C), 171.7 (C), 172.7 (C); HRMS calcd for C_{25} $\mathrm{H} 24 \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} 432.1507$, found 432.1505.

4(E)-E thylidene-1,5-dioxo-6-[2-(phenylsulfanyl) ethyl]-2,3,4,5,6,7-hexahydro-1H-3,7-methano[1,4]diazonino[1,2a]indole (19b). To a solution of tetracycle 17b ($60 \mathrm{mg}, 0.13$ mmol) and 1,8-bis(dimethylamino)naphthalene ($38 \mathrm{mg}, 0.18$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ cooled at $-40^{\circ} \mathrm{C}$ was added a solution of $\mathrm{Tf}_{2} \mathrm{O}(0.030 \mathrm{~mL}, 0.18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ in four portions, at 15 min intervals. The temperature of the mixture was allowed to rise to $-10^{\circ} \mathrm{C}$ over a period of 1 h . The reaction mixture was concentrated, and the residue was directly purified by flash chromatography (hexanes-AcOEt, increasing polarity) to give the vinyl triflate 18b ($32 \mathrm{mg}, 50 \%$), al ong with recovered starting material (20 mg). $\mathrm{LiCl}(22 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(8 \mathrm{mg}, 0.007 \mathrm{mmol})$ were added to a solution of the above triflate ($3 \times 32 \mathrm{mg}, 0.17 \mathrm{mmol}$) in THF (4 mL) at room temperature. $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}(99 \mathrm{mg}, 0.091 \mathrm{~mL}, 0.33 \mathrm{mmol}$) was slowly added, and the resulting mixture was refluxed for 1 h . The solvent was removed, and the resulting residue was purified by flash chromatography (hexanes-AcOEt, increeasing polarity) to give the (E)-ethylidene derivative 19b: 60 mg (85\%); IR (film) 1614, 1661, 1699; ${ }^{1}$ H NMR 1.91 (d, J $=7.3$ $\mathrm{Hz}, 3 \mathrm{H}), 2.33(\mathrm{br} \mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dm}, \mathrm{J}=13.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.87(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, \mathrm{J}=13.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~m}$, $3 \mathrm{H}), 3.44(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.17$ $(\mathrm{s}, 1 \mathrm{H}), 7.17(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.35(\mathrm{~m}, 7 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $13.8\left(\mathrm{CH}_{3}\right)$, $28.8(\mathrm{CH}), 30.3\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 45.4\left(\mathrm{CH}_{2}\right), 46.1\left(\mathrm{CH}_{2}\right), 56.6$ (CH), $112.7(\mathrm{CH}), 115.6(\mathrm{CH}), 120.5(\mathrm{CH}), 123.7(\mathrm{CH}), 125.8$ (CH), 126.2 (CH), 127.7 (C), 129.1 (CH), 129.1 (CH), 129.8 (C), 135.3 (C), 135.4 (C), 136.9 (CH), 138.3 (C), 162.9 (C), 171.0 (C); HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} 416.1558$, found 416.1563.

3(E)-Ethylidene-4,13-dioxo-7-(phenylsulfanyl)-2,12-eth-anoindolo[2,3-a]quinolizidine (21). Sulfide 19b (25 mg , 0.06 mmol) was allowed to react with m-CPBA ($13.4 \mathrm{mg}, 0.06$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ as described for the preparation of sulfoxide 8. After workup and flash chromatography (95:5 AcOEt-DEA), sulfoxide $\mathbf{2 0}$ was obtained as a 1:1 mixture of stereoisomers: 24 mg (90\%).

TFAA ($49 \mathrm{mg}, 0.033 \mathrm{~mL}, 0.23 \mathrm{mmol}$) was slowly added to a solution of sulfoxides $\mathbf{2 0}(23 \mathrm{mg}, 0.058 \mathrm{mmol})$ and 2,6-di (tertbutyl) pyridine ($44 \mathrm{mg}, 0.052 \mathrm{~mL}, 0.23 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2$ mL) cooled at $0{ }^{\circ} \mathrm{C}$. After being stirred at room temperature for 30 min , the mixture was refluxed for 1 h 30 min . The sol vent was evaporated, and the residue was chromatographed (1:1 hexanes-AcOEt) to give pentacycle 21: $17 \mathrm{mg}(71 \%)$; ${ }^{1} \mathrm{H}$ NMR (300 MHz) 1.77 (d, J $=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), 2.37 (dd, J = 14.6, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dt}, \mathrm{J}=14.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dt}, \mathrm{J}=14.5$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, \mathrm{J}=14.6,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{br}, 1 \mathrm{H})$, $3.60(\mathrm{dd}, \mathrm{J}=14.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dm}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.68 (br s, 1H), 5.07 (dd, J = 14.1, $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.09 ($\mathrm{q}, \mathrm{J}=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.64(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $14.0\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{2}\right), 27.2(\mathrm{CH}), 43.5(\mathrm{CH}), 46.7\left(\mathrm{CH}_{2}\right)$, $49.5\left(\mathrm{CH}_{2}\right), 51.8(\mathrm{CH}), 114.6(\mathrm{CH}), 120.3(\mathrm{C}), 120.4(\mathrm{CH}), 123.9$ (CH), 125.6 (CH), 127.9 (CH), 128.8 (C), 129.1 (CH), 133.0 (C), 133.5 (CH), 136.9 (C), 137.3 (C), 137.8 (C), 137.8 (CH), 164.6 (CO), 172.8 (CO).
3(E)-E thylidene-4,13-dioxo-2,12-ethanoindolo[2,3-a]quinolizidine (2). ${ }^{9 c, 12}$ AIBN (catalytic amount) and $n-\mathrm{Bu}_{3} \mathrm{SnH}$ $(0.020 \mathrm{~mL}, 0.072 \mathrm{mmol})$ were added to a solution of pentacycle 21 ($15 \mathrm{mg}, 0.036 \mathrm{mmol}$) in dry $\mathrm{C}_{6} \mathrm{H}_{6}(0.8 \mathrm{~mL})$ at room temperature. The reaction vessel was then placed in a preheated $\left(100{ }^{\circ} \mathrm{C}\right)$ oil bath, and the mixture was refluxed for 1 h. Evaporation of the solvent followed by flash chromatography of the residue gave pentacyclic dilactam 2: $8 \mathrm{mg}(72 \%)$; ${ }^{1} \mathrm{H}$ NMR $1.77(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.51(\mathrm{dt}, \mathrm{J}=14.4,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.60 (dt, J $=14.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.67 (ddd, J = 16.1, 3.9, 0.9 $\mathrm{Hz}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{dd}, \mathrm{J}=16.1,9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.44(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{br}, 1 \mathrm{H}), 4.67(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~m}$, 1 H), 7.05 (qd, J $=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.25-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.40$ $(\mathrm{dm}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dm}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 14.3 $\left(\mathrm{CH}_{3}\right), 20.0\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 27.6(\mathrm{CH}), 42.4\left(\mathrm{CH}_{2}\right), 47.0\left(\mathrm{CH}_{2}\right)$, $51.9(\mathrm{CH}), 115.2(\mathrm{CH}), 117.8(\mathrm{CH}), 120.1(\mathrm{C}), 123.9(\mathrm{CH}), 125.2$ (CH), 129.3 (C), 132.6 (C), 135.8 (C), 136.8 (C), 138.1 (CH), 166.1 (C), 172.1 (C); HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ 306.1368, found 306.1375.

Acknowledgment. Financial support from the DGICYT, Spain (project PB94-0214), is gratefully acknowledged. Thanks are also due to the Comissionat per a Universitats i Recerca, Generalitat de Catalunya, for Grant No. 1997SGR-0018.

Supporting Information Available: Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds 2, 5a, 6a, 7a, 12-14, 17b, 19a,b, and 21. This material is available free of charge via the Internet at http://pubs.acs.org.

J O9911894

[^0]: (1) F or a review, see: Bosch, J .; Bennasar, M.-L. Synlett 1995, 587.
 (2) (a) Bennasar, M.-L.; Alvarez, M.; Lavilla, R.; Zulaica, E.; Bosch, J. J. Org. Chem. 1990, 55, 1156. (b) Bennasar, M.-L.; Zulaica, E.; J iménez, J.-M.; Bosch, J. J. Org. Chem. 1993, 58, 7756.
 (3) (a) Alvarez, M.; Salas, M.; de Veciana, A.; Lavilla, R.; Bosch, J . Tetrahedron Lett. 1990, 31, 5089. (b) Amat, M.; Linares, A.; Bosch, J . J. Org. Chem. 1990, 55, 6299.
 (4) (a) Bennasar, M.-L.; Zulaica, E.; Ramírez, A.; Bosch, J . J . Org. Chem. 1996, 61, 1239. (b) Bennasar, M.-L.; Zulaica, E.; Ramírez, A.; Bosch, J. Tetrahedron 1999, 55, 3117.
 (5) (a) Bennasar, M.-L.; Vidal, B.; Bosch, J. Chem. Commun. 1996, 2755. (b) Bennasar, M.-L.; Vidal, B.; Bosch, J . J . Org. Chem. 1997, 62, 3597.
 (6) Le Men, J.; Taylor, W. Experientia 1965, 21, 508.
 (7) F or a preliminary account of this part of the work, see: Bennasar, M.-L.;J iménez, J .-M.; Sufi, B. A.; Bosch, J . Tetrahedron Lett. 1996, 37, 9105.
 (8) For a preliminary account of this part of the work, see: Bennasar, M.-L.; Vidal, B.; Sufi, B. A.; Bosch, J . Chem. Commun. 1998, 2639.

[^1]: (9) (a) Yamada, K.; Aoki, K.; K ato, T.; Uemura, D.; van Tamelen, E. E. J. Chem. Soc., Chem. Commun. 1974, 908. (b) Hachmeister, B.; Thielke, D.; Winterfeldt, E. Chem. Ber. 1976, 109, 3825. (c) Benson, W.; Winterfeldt, E. Angew. Chem., Int. Ed. Engl. 1979, 18, 862. (d) Wenkert, E.; Vankar, Y. D.; Y adav, J . S. J. Am. Chem. Soc. 1980, 102, 7971. (e) Banks, B. J.; Calverley, M.J.; Edwards, P. D.; Harley-M ason, J. Tetrahedron Lett. 1981, 22, 1631. (f) Bohlmann, C.; Bohlmann, R.; Rivera, E. G.; Vogel, C.; Manandhar, M. D.; Winterfeldt, E. Liebigs Ann. Chem. 1985, 1752. (g) Wenkert, E.; Guo, M.; Pestchanker, M. J .; Shi, Y.-J .; Vankar, Y. D. J. Org. Chem. 1989, 54, 1166. (h) Overman, L. E.; Robichaud, A. J. J. Am. Chem. Soc. 1989, 111, 300. (i) Martin, S. F.; Benage, B.; Geraci, L. S.; Hunter, J . E.; Mortimore, M. J. Am. Chem. Soc. 1991, 113, 6161. (j) Lounasmaa, M.; J okela, R.; Miettinen, J.; Hal onen, M. Heterocycles 1992, 34, 1497. (k) Lounasmaa, M.; J okela, R.; Anttila, U.; Hanhinen, P.; Laine, C. Tetrahedron 1996, 52, 6803. (I) Takayama, H.; Watanabe, F.; Kitajima, M.; Aimi, N. Tetrahedron Lett. 1997, 38, 5307. (m) Martin, S. F.; Chen, K. X.; Eary, C. T. Org. Lett. 1999, 1, 79. (n) See also: Birman, V. B.; Rawal, V. H. Tetrahedron Lett. 1998, 39, 7219.
 (10) Angenot, L.; Dideberg, O.; Dupont, L. Tetrahedron Lett. 1975, 1357.
 (1i) Massiot, G.; Delaude, C. The Alkaloids; Brossi, A., Ed.; Academic Press: San Diego, 1988; Vol. 34, pp 211-329.
 (12) Benson, W.; Winterfeldt, E. Heterocycles 1981, 15, 935.
 (13) Danieli, B.; Lesma, G.; Mauro, M.; Palmisano G.; Passarella, D. J. Org. Chem. 1995, 60, 2506.

[^2]: (14) (a) This pentacyclic system is present in the alkaloid 2,7dihydroxyapogeissoschizine: Quetin-Leclercq, J.; Dive, G.; Delaude, C.; Warin, R.; Bassleer, R.; Angenot, L. Phytochemistry 1994, 35, 533. For previous synthetic approaches, see: (b) Bennasar, M.-L.; Zulaica, E.; Sufi, B. A.; Bosch, J. Tetrahedron 1996, 52, 8601. (c) Birman, V. B.; Rawal, V. H. J. Org. Chem. 1998, 63, 9146.
 (15) Dilactam 2 also constitutes an intermediate in an early synthesis of (\pm)-geissoschizine. See ref 9c.

[^3]: (16) F or the use of this procedure to the synthesis of (E)-ethylidenebearing indole alkaloids, see: Besselièvre, R.; Cosson, J.-P.; Das, B. C.; Husson, H.-P. Tetrahedron Lett. 1980, 21, 63 . See also refs 2, 3a, 4a, 5b, and 9d,g.
 (17) F or a discussion on the effect of lithium iodide in the acidinduced cyclization of these kind of dihydropyridines, see: Bennasar, M.-L.; J iménez, J .-M.; Sufi, B. A.; Bosch, J. Tetrahedron Lett. 1996, 37, 7653.
 (18) (a) F or a review, see: Padwa, A.; Gunn, D. E., J r.; Osterhout, M. H. Synthesis 1997, 1353. (b) For closure of the C ring of indolo-[2,3-a]quinolizidines by the Pummerer reaction, see: Amat, M.; Hadida, S.; Pshenichnyi, G.; Bosch, J . J. Org. Chem. 1997, 62, 3158.
 (19) Craig, D.; Daniels, K.; MacK enzie, A. R. Tetrahedron 1992, 48, 7803.

[^4]: (23) (a) Back, T. G. J. Org. Chem. 1981, 46, 1442. See also: (b) Danieli, B.; Lesma, G.; Palmisano, G.; Passarella, D.; Silavani, A. Tetrahedron 1994, 50, 6941.
 (24) (a) Bettoni, G.; Franchini, C.; Morlacchi, F.; Tangari, N.; Tortorella, V. J. Org. Chem. 1976, 41, 2780. (b) Miller, R. A.; Li. W.; Humphrey, G. R. Tetrahedron Lett. 1996, 37, 3429.
 (25) (a) Marsais, F.; Pineau, Ph.; Nivolliers, F.; Mallet, M.; Turck, A.; Godard, A.; Queguiner, G.J . Org. Chem. 1992, 57, 565. (b) Rocca, P.; Cochennec, C.; Marsais, F.; Thomas-dit-Dumont, L.; Mallet, M.; Godard, A.; Queguiner, G. J. Org. Chem. 1993, 58, 7832. (c) Comins, D. L.; Saha, J. K. Tetrahedron Lett. 1995, 36, 7995.
 (26) (a) Dodd, R. H.; Poissonet, G.; Potier, P. Heterocycles 1989, 29, 365. (b) Dobbs, A. P.; J ones, K.; Veal, K. T. Tetrahedron Lett. 1997, 38, 5833. See also: (c) Vega, J. A.; Vaquero, J.J.; Alvarez-Builla, J .; Ezquerra, J.; Hamdouchi, C. Tetrahedron 1999, 55, 2317.
 (27) Güngör, T.; Marsais, F.; Queguiner, G. J . Organomet. Chem. 1981, 215, 139.

